# -------------------------------------------- # CITATION file created with {cffr} R package # See also: https://docs.ropensci.org/cffr/ # -------------------------------------------- cff-version: 1.2.0 message: 'To cite package "mglasso" in publications use:' type: software license: MIT title: 'mglasso: Multiscale Graphical Lasso' version: 0.1.3 doi: 10.32614/CRAN.package.mglasso abstract: Inference of Multiscale graphical models with neighborhood selection approach. The method is based on solving a convex optimization problem combining a Lasso and fused-group Lasso penalties. This allows to infer simultaneously a conditional independence graph and a clustering partition. The optimization is based on the Continuation with Nesterov smoothing in a Shrinkage-Thresholding Algorithm solver (Hadj-Selem et al. 2018) implemented in python. authors: - family-names: Sanou given-names: Edmond email: doedmond.sanou@univ-evry.fr repository: https://desanou.r-universe.dev commit: 0cbbafe519d84dcc75b0461e8b92e13720cc64ce url: https://desanou.github.io/mglasso/ contact: - family-names: Sanou given-names: Edmond email: doedmond.sanou@univ-evry.fr